Introduction to Pro. Liu Jiangnan

- Chinese geodesist and educator;
- President of Duke Kunshan University from 2012.
- Academician of Chinese Academy of Engineering since 1999;
- Former president of Wuhan University from 2003 to 2008;
- Have developed the first GPS satellite positioning data processing system in China;
- Participating the design of National High Precision GPS Network;
Progress and Thinking on Intelligent High Precision Maps

Jingnan Liu

Wuhan University
2018.11
Foreword

Historic evolution of using maps in the car

- Paper Map
- Digital Map with GPS
- Navigation APP
- Map with Live layers
- HD Live Map with AI
1. Background and demands
2. Compared with traditional map
3. Main elements and layers
4. Outlook of technologies and standards
5. Summary and thoughts
1. Background and demands

1.1 Advancement of GNSS technology

- **BeiDou Navigation Satellite System (BDS)**
 - China is building **BDS-3**, and will provide services including **SAR** (Search and Rescue) and **SMS** (Short message service) worldwide around **2020**
 - The **18th, 19th** BeiDou-3 satellite was launched on **Nov.19**
 - BDS is about to serve **Belt and Road** this year

[Routes of the China-proposed Belt and Road Initiative]
1. Background and demands

1.1 Advancement of GNSS technology

- **BeiDou Ground-based Augmentation System (BDGBAS)**
 - Enhance the BeiDou/GNSS system by broadcasting satellite signal error corrections
 - BDS-3 will be able to provide real-time precise position and augment service for navigation with meter to centimeter level accuracy to China

- **Accurate dynamic positioning + High precision maps**
 - navigation needs for Autonomous Driving
 - connect precise GNSS technology with high precision maps to meet the diverse needs in the intelligent era
1. Background and demand

1.2 Accurate and intelligent trends of traffic management

- Growing needs of Traffic Management and Transportation Planning require precision not only road level, but also lane level with meter level
 - Navigation for reversible lanes and HOV Lanes
 - Lane supervision in traffic violation
 - Online determination of responsibility and loss for vehicle accidents
 - Usage Based Insurance (UBI)
1. Background and demand

1.2 Accurate and intelligent trends of traffic management

- “Internet + Intelligent Transportation” Plan
 - Human-centered
 - Comprehensively promote online integration and sharing of transportation resources, such as transportation infrastructure, transportation tools, transportation system, etc.
 - safe and convenient mobility, green, intelligent, ubiquitous service
 - provide location service with precise time and position in wide area
1.3 Intelligent and Connected Vehicles and Autonomous Driving

- **Related national policies**

 - The United States will develop **intelligent Internet of Vehicles** as the key work content for the development of intelligent transportation systems. The federal self-driving vehicles policy has been published in 2016.

 - The government actively promotes cross-sectoral synergy and promotes the implementation of intelligent networked automotive projects. It is planned to allow automated vehicles in restricted areas in 2020 and form a fully self-driving car market target in Japan by 2025.

- **Safety requirements of Autonomous Driving**

 - The subject of live environmental Perception changed from human to machine.

 - Driving system puts high demands on **safety and stability** and requires a high match between accurate real-time positioning and high-precision road map.
Contents

1. Background and demands
2. Compared with traditional map
3. Main elements and layers
4. Outlook of technologies and standards
5. Summary and thoughts
2.1 Definition and classification of Intelligent High-Precision Map (IPHM)

- IPHM is an intelligent map that meet the following constraints:
 - has **absolute accuracy** of the coordinates better than 0.1m
 - contains two kinds of information, one is **static information** such as shape of roads and lanes, traffic constraints and surrounding traffic environment, another is **semi-dynamic or dynamic information** such as real-time traffic and obstacles
 - able to process information with collaboration of **cloud computing** and the **IoT**
 - **able to serve multiple areas** such as delicacy management of intelligent transportation, Autonomous Driving and Robot navigation etc.
2.1 Definition and classification of Intelligent High-precision Maps (IPHM)

According to Application Scenarios, it can be divided into four categories: high precision maps for vehicle, for control center, for robots, and for cloud.
2. Compared with traditional maps

2.2 Theory development of high-precision map for vehicles

- **Information load and expression (What is the information?)**

Traditional Maps
- Information is divided into direct information and indirect information
 - Direct information is simply reflected by graphics and symbols
 - Indirect information depends on user's own understanding and spatial data mining in post-processing
- The map information is updated manually

Intelligent High Precision Maps
- Being more refined, dynamic and real-time, they put more emphasis on data mining and automatic acquisition of indirect information
- User's understanding of the objective world is enhanced from map spatial perception to dynamic cognition
- The map information is updated synchronously while map is being used
2. Compared with traditional map

2.2 Theory development of high-precision map for vehicles

- **Information transmission (Where is the information from?)**

Traditional Maps
- As the *spatial models* of the objective world, they are the cartographer's understanding of the objective world within *certain norms*
- Information transmission is a *one-way process* from cartographer to user

Intelligent High Precision Maps
- An extension of traditional maps which can be *understood by machine*
- Collaborations between professional cartographers and *crowdsourcing data*
- Users no longer just receive data, but also *participate in map production*
- Users' cognition and personalized needs will affect final presentation of the map model, to realize the *self-adaptation* between the maps and users' requirements
2.2 Theory development of high-precision map for vehicles

- The use of information (How to use the information?)

Traditional Maps

- The **assisted decision-making** ability (like planning) of maps is based on users' understanding of the environment.
- Human is the subject in the process of map using. Based on their own **visual perception** and **logical thinking ability**, users rely on geo-information **carried by** graphically expressed maps to complete specific task.
2.2 Theory development of high-precision map for vehicles

- The use of information (How to use the information?)

Intelligent High Precision Maps

- The machine becomes another subject in the process of map using, The usage is “human-machine-map” interacting with each other
- Quantitative and digital high-precision maps provide highly detailed and dynamic environmental information
- The live map with real-time perception must participate in the decision-making and real-time control of driving, and be able to self-learning, self-adaptation and self-evaluation
Contents

1. Background and demands
2. Compared with traditional map
3. Main elements and layers
4. Outlook of technologies and standards
5. Summary and thoughts
3. Main elements and layers

3.1 Layers for Intelligent High-precision Maps

- **Data model**
 - Accurately reflect road environment
 - Achieve multi-scale calibration and high speed access
 - Meet spatial indexing requirements for Positioning, path planning and navigation

- **Layers**
 - **Static layer**: road/ physical and geometric characteristics of lanes/ infrastructure
 - **Real-time layer**: real-time traffic and obstacles
 - **Dynamic layer**: autonomous sensing data /V2X data
 - **User layer**: Driving task/ Driving behavior/ vehicle configuration

1. Static layer
 - Road model
 - Traffic infrastructure
 - Position information

2. Real-time layer
 - Road Construction
 - Traffic jam
 - Traffic management
 - Weather prediction

3. Dynamic layer
 - Vehicles
 - Pedestrian

4. User layer
 - Vehicle configuration
 - Scene information
 - Behavior monitoring
 - Cognitive characteristics

Reference layers of High-precision road navigation map
3. Main elements and layers

3.2 Examples of representative elements
Contents

1. Background and demands
2. Compared with traditional map
3. Main elements and layers
4. Outlook of technologies and standards
5. Summary and thoughts
4. Outlook of technologies and standards

4.1 Several technical problems that need to be solved

Data collection and updating
- Centralized professional collection
- Crowdsourcing
- Integration of professional collection and crowdsourcing

Dynamic data interaction
- Machine vision and target detection
- Multi-source sensor collaboration
- V2X

Map production and data processing
- Multi-semantic segmentation
- Computer vision
- Geometric rendering and topology

Computing Pattern
- Cloud computing
- Edge calculation (cloud and terminal collaboration)

Application and usage
- Lane level map matching
- Map-assisted perception and position planning and obstacle avoidance

Autonomous intelligent control
- Accurate match between traffic signs and dynamic position of vehicles
- Real-time driving control through information in Internet of Vehicle
- Environmental and behavioral monitoring
- Driving behavior and driving control
4.2 Standards development

International standards

- ISO TC204/WG3 — Database construction and data exchange standards for intelligent traffic maps
- OpenDRIVE (standardize the logical road description to facilitate the data exchange between different driving simulators) — OpenDRIVE® V 1.4 Format Specification, Revision H
- ADASIS (Define a interface specifications) — ADASIS v1, ADASIS v2, ADASIS v3
- ETSI — ETSI TR 102 863 V1.1.1 (2011-06)
- NDS Steering Committee put HD map on standardization agenda in 2013 by installing dedicated Working Group 3, then in 2017 NDS standard is ready for 2020 autonomous cars
- OpenAutoDrive Forum is the cross-domain platform driving standardizations in the area of autonomous driving
- DMP (Dynamic Map Planning Co., Ltd.) — Study the methodologies of developing and maintaining high-precision 3D map data for Automated Driving

Standards in China

- Lead by Wuhan University — “Data Specifications of Road High-precision Electronic Navigation Map”
- Lead by Beijing University of Civil Engineering and Architecture — “Production Technology Specifications of Road High-precision Electronic Navigation Map”
- China ITS Industry Alliance (C-ITS) — “Digital Map for Intelligent Vehicle Data Model & Exchange Format Specification”
- CAICV HD MAP WG — 3 subjects: "Research on Automated Driving Map Standard System" (Lead by NavInfo); "Research on Map deflection and Communication between mapping management departments" (Lead by Amap); "Research on Autopilot Map Technology and Application Roadmap" (Lead by Wuhan KOTEI Informatics Co., Ltd.)
- Baidu — Apollo OpenDrive specifications

➢ 2018-2019: Ministry of Natural Resources (National Administration of Surveying, Mapping and Geoinformation of China) entrusts Wuhan University, Tongji University, Beijing University of Civil Engineering and Architecture, etc. to set standard related to Surveying, Mapping and Geoinformation Industry, and release the draft of “Data Specifications of Road High-precision Electronic Navigation Map"
4.3 Roadmap

Roadmap of Intelligent high-precision maps

<table>
<thead>
<tr>
<th>Phase one:</th>
<th>Phase two:</th>
<th>Phase three:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types</td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Intelligent high-precision maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High precision map related standard system will be formed in an all-round way</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"human-vehicle-road-cloud"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>will achieve highly collaborative</td>
<td></td>
</tr>
<tr>
<td>Dynamic high-precision maps</td>
<td>Wireless communication network for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vehicles will basically meet the demand</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static high-precision maps</td>
<td>Complete the static data survey and formulation of related standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Establish data acquisition system with high precision and update ecological chain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carry out dynamic data survey and determine types, contents, and definitions of dynamic map data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- “The intelligent vehicle innovation and development strategy” released by the national development and reform commission of China specifies the national intelligent vehicle innovation and development strategy: the framework of road network facilities, regulations and standards for standard intelligent vehicles will be **basically formed** by 2020, and be **fully formed** by 2025, by that time, "human-vehicle-road-cloud" could be highly coordinated.

- The European Union plans to develop intelligent transport from the two aspects of Internet road environmental resource aggregation and intelligent network vehicles, and aims to achieve that goal by 2050.

- Japan conducted a static data survey of autonomous driving in 2015; Conduct dynamic data research in 2016, and establish dynamic map platform to discuss dynamic map data use cases and element contents. Japan will achieve full coverage of high-precision maps by 2020.
Contents

1. Background and demands
2. Compared with traditional map
3. Main elements and layers
4. Outlook of technologies and standards
5. Summary and thoughts
IHPM are indispensable *infrastructures* for intelligent connected vehicles. Their database can be established and updated dynamically, according to different demands and rules.
In IHPM, lane lines, 3D coordinates of traffic signs and related parameters (such as, turning radius, gradient), have **driving control capability**. They are the ultimate control basis while the environmental perception system such as vision or radar fails.
Standards for IHPM are driven by technologies and demands. Since safety requirements are extremely demanding, many standards need to be set simultaneously with laws.

SAE Automation Levels

- **0: No Automation**
 - Zero autonomy; the driver performs all driving tasks.
- **1: Driver Assistance**
 - Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design.
- **2: Partial Automation**
 - Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.
- **3: Conditional Automation**
 - Driver is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.
- **4: High Automation**
 - The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.
- **5: Full Automation**
 - The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.
Crowdsourcing will be a necessary data source to ensure real-time in IHPM. Ensuring data availability, reliability, readability, determining data validity and filtering, and the data interaction priority as well as data delay rules are key points and major difficulties.
Based on environmental perception and map matching technologies, IHPM have the ability to control Autonomous Driving with specifications such as traffic rules and map data constraints, which traditional maps cannot do.
IHPM are helpful to achieve efficient mobility with high quality, thus the vision of “Mobility-as-a-service” can be realized.
Progress and Thinking on Intelligent High Precision Maps

Thanks for your attention
4.1 Several technical problems that need to be solved

<table>
<thead>
<tr>
<th>Data collection</th>
<th>How to reduce high costs of professional collection according to high data update rates?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map production</td>
<td>How to reduce costs of computing resource under the condition of big data (point cloud, image, location, etc.)?</td>
</tr>
<tr>
<td>Data interaction</td>
<td>How to build real-world environments with dynamic real-time data?</td>
</tr>
<tr>
<td>Computing pattern</td>
<td>How to avoid data backlog due to limited computing power of the cloud platform?</td>
</tr>
<tr>
<td>Applications</td>
<td>How to avoid dynamic obstacles quickly? And how to promote active security information from cloud platform in advance and how can users obtain it?</td>
</tr>
<tr>
<td>Intelligent control</td>
<td>How to implement real-time and high precision perception for traffic signs that are used to aid autonomous intelligent driving?</td>
</tr>
</tbody>
</table>

Integration professional collection with crowdsourcing

Artificial intelligence is a new approach

collaborative awareness of Machine vision and V2X

co-processing between Cloud and terminal ends

assistive environmental perception /positioning/planning/control

Autonomous intelligent control with self-learning, self-adaptation and self-evaluation