BUILDING NATIONAL DATABASES USING EXPERT SOURCING

Prof. Yaron Felus
Chief Scientist

20 November, 2018
Contents

- Background on internet Eras
- What is a data lossless nation?
 - Data products in the construction process
 - National mapping standard
 - The Inter-agency GIS committee
- On-line QC tool
- The data integration tool
- Conclusions
One organization providing information (Read)

Collaboration with the public (Read and write)

Wiki, facebook, youtube, waze

Web 3.0: Smart and connected system (Read, write and understand)

Smart engine that links resources
The Beginning

Organization Management

Dep 3

Dep 2

Dep 1
Web 1.0
One data source
Connectivity standards
Uniformity
Simple user interface
Web 2.0
Collaboration with the public
(Read and write)
Quality control
Data fusion
More than 80% is user’s generated content
Crowdsourcing vs Wisdom of the Crowd vs Expert Sourcing

• **Crowdsourcing:** the act of obtaining information from a large group of people

• **Wisdom of the crowd** is the collective opinion of a group of individuals

• **Expert-sourcing:** the act of obtaining information from a large group of experts
Feedback and notifications on problems in Topographical DB at the National Geospatial Portal

Crowdsourcing of defibrillator locations
Contents

• Background on internet Eras
• What is a data lossless nation?
 • Data products in the construction process
 • The Inter-agency GIS committee
 • National mapping standard
• On-line QC tool
• The data integration tool
• Conclusions
Every piece of data, creating by any professional is QC-ed, integrated and **stored in the national database**.
How to create a data lossless culture?

1. How to identify all the data generating parties?
2. How to convince organizations and people to share data? Despite the many barriers (legal, security, privacy, copyrights, tradition)
3. How to deal with different data format, structures and types which makes it hard to reuse data? Large amount of information unstructured.
4. How can we perform quality control on so many datasets?
5. How can we integrate all the data into a uniform database?
The power of collaboration
The inter-agency GIS committee was established in 1997 by a prime-minister order. It is Chaired by the SOI Director General.

The committee has delegates from 45 governmental offices and 256 local authorities. This year the committee teams had 22 meetings with 176 participants.

The key objective of the committee was to promote efficient use of GIS in the national level through data and knowledge sharing, and standards and working procedure development.
How to create a data lossless culture?

1. How to identify all the data generating parties?
2. How to convince organizations and people to share data? Despite the many barriers (legal, security, privacy, copyrights, tradition)
3. **How to deal with different data format, structures and types which makes it hard to reuse data?** Large amount of information unstructured.
4. How can we perform quality control on so many datasets?
5. How can we integrate all the data into a uniform database?
Standards that link hardware and software

Why standards?

Standards as a common language
Define data format and layers

Define the content and the cartography
Uniform mapping

Permit

As-built

Construct

Register

National mapping standard
How to create a data lossless culture?

1. How to identify all the data generating parties?
2. How to convince organizations and people to share data? Despite the many barriers (legal, security, privacy, copyrights, tradition)
3. How to deal with different data format, structures and types which makes it hard to reuse data? Large amount of information unstructured.
4. How can we perform quality control on so many datasets?
5. How can we integrate all the data into a uniform database?
Topographical and Cadastral system development

Data distribution

First Generation

Second Generation

Quality Control

SOI national database

Link

Government Databases

Registration

Planning

Building permit

Construction

Expert sourcing
Simplicity – friendly user experience

User’s view

Internal architecture
Old design
Gas stove: 4 burners and 5 buttons

Modern design
No need for user manual or training

Rules:
1. No need for user manual or training
2. Smallest number of clicks (more is less)
3. Simple and fun to work with
QA report → The TopoCad System → DWG
1. Open a project
2. Define project
3. Load data
4. View QC results
Contents

• Background on internet Eras
• What is a data lossless nation?
 • Data products in the construction process
 • The Inter-agency GIS committee
 • National mapping standard
• On-line QC tool
• The data integration tool
• Conclusions
Quality Control Process (ISO 19157)

Spatial data file

Standard compatible

Readable format

 Logical consistency

Meet rules

Completeness

No omissions or commissions

Accuracy assessment

Positional accuracy

Thematic accuracy

Temporal quality

Compliance (metadata report)

Incompatible

Need To correct
The program finds elements that do not conform to (logical) rules:

– Topology issues (Closed buildings – overshoots & undershoots)
– Topographic elements that appear in an incorrect layer (a road in a layer of buildings)
– Contour lines crossing each other
– A fence corner that appears inside a road
– Parcels overlapping each other (forming parcels smaller than 3 square meters)
– Duplicated lines
Completeness

- Completeness includes missing information (omissions) or information that appear in the file and not in reality (additions).
- The content of the map is defined in the specifications and match the map scale.
- Completeness test are performed interactively by overlaying the data file on top of a orthophotography at the proper scale.
- An error matrix is used to report of completeness.
Commission

Omission
Thematic and positional accuracy

- Tests for thematic and positional accuracy are performed by field checking (of a sample) of objects in the map and comparing the field with the data on the map.
- What is the attribute value (type of tree) in the map and what is the correct value in the field.
- Root mean squared error is used to evaluate the positional accuracy. It is calculated from the differences between a value in the map and an accurately measured position in the field.

\[
RMSE_x = \sqrt{\frac{\sum (dx_i)^2}{n_x}}
\]
Data integration is a complex process which is currently done semi-automatically (interactively).

The computer identifies features to Add, Delete and Update.

A human operator has to approve the change.
Summary

• Data is generated every steps of governmental and engineering activities
• Expert sourcing is the process of acquiring these data and making a useful database from it.
• We presented a working process.
• Some challenges that will be solved are:
 – A complete automatic process for the quality control and the conflation
 – Comprehensive treatment of the intellectual property rights
Thanks you

So, Where are we exactly?
DO NOT BE SO 2014
SHARE!

OPEN DATA
Why Geo-spatial technologies?

Geo-spatial technology underpins smart nation operations

- Environment and nature protection
- Demographics and social services
- Public Safety and Security
- Financial data (Taxes)
- Infrastructure (water, transportation...)
- Planning, registration, construction